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The influence of a small amount of gas within the saturating liquid of a porous
medium on acoustic wave propagation is investigated. It is assumed that the gas
volumes are spherical, homogeneously distributed, and that they are within a very
narrow range of bubble sizes. It is shown that the compressibility of the saturating
fluid is determined by viscous, thermal, and a newly introduced Biot-type damping of
the oscillating gas bubbles, with mean gas bubble size and concentration as important
parameters. Using a super-saturation technique, a homogeneous gas–liquid mixture
within a porous test column is obtained. Gas bubble size and concentration are
measured by means of compressibility experiments. Wave reflection and propagation
experiments carried out in a vertical shock tube show pore pressure oscillations, which
can be explained by incorporating a dynamic gas bubble behaviour in the linear Biot
theory for plane wave propagation.

1. Introduction
The acoustic properties of liquid-saturated porous media are very sensitive to the

presence of a small amount of gas in the pores. In seismic engineering practice, this
may affect the interpretation of the reflected waves from the subsurface geological
strata. In petrophysics, acoustic borehole tools are basically used to measure reser-
voir porosities. These measurements also are influenced by low concentrations of
gaseous inclusions. An extended literature survey was given by Anderson & Hampton
(1980a, b). More recently, Biot’s two-phase theory was modified to allow for the pres-
ence of a gas phase. Garg & Nayfeh (1986) and Berryman, Thigpen & Chin (1988)
present rather general models, applicable to a wide range of gas volume fractions.
The effect of a small number of oscillating gas bubbles on the propagation and
damping of compressional waves in porous media was also described by Bedford
& Stern (1983). Experimental data in this field are given by Dontsov, Kuznetsov &
Nakoryakov (1987) and van der Grinten et al. (1988), who used a shock tube tech-
nique to induce compressional waves in a porous cylinder. Sniekers et al. (1989) and
Smeulders, De la Rosette & van Dongen (1992a) also presented wave measurements
on dilute gas–liquid mixtures in porous media and made preliminary comparisons
with linear wave theory, but they did not discuss the thermal damping nor did they
take into account the compressibility effects of the fluid–solid system.

In this paper, the damped oscillations of an isolated gas bubble in the saturating
liquid of a porous sample will be studied. Viscous and thermal damping mechanisms
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are identified and quantified. A Biot-type damping mechanism is introduced. Follow-
ing van Wijngaarden (1972), who studied wave propagation in bubbly liquids, we
assume that the results obtained for the isolated bubble will also hold in the case of
a mixture of liquid and gas bubbles. Secondly, a homogeneous mixture of liquid and
gas bubbles is prepared within the pores of a cylindrical sample. Gas bubble size and
concentration are independently measured by means of compressibility experiments.
Thirdly, wave experiments are carried out in a shock tube and pore pressures are
measured and compared with linear Biot theory for plane wave propagation, which
is modified to account for the behaviour of the gas bubbles.

2. General relations
We start with the conservation laws of mass and momentum for two interacting

media of a porous system, namely solid material indicated by the subscript s and pore
fluid, indicated by the subscript f. The gas bubbles will not be treated as a separate
medium, but they will be considered as part of the pore fluid. This means that (Bear
& Bachmat 1990, pp. 78, 79)

∂

∂t
(φmρm) +

∂

∂xj
(φmρmvmj) = 0, (2.1)

∂

∂t
(φmρmvmi) +

∂

∂xj
(φmρmvmjvmi) = − ∂

∂xj
(φmpmji) + fmi, (2.2)

where summation over repeated index j is assumed. The subscript m is either s or f,
φm is the volume fraction of component m, pm the pressure or compressive stress, ρm
the density, vm the velocity and fm represents the interaction force. It is assumed that
the solid temperature does not change. φf = 1 − φs is also known as the porosity.
The compressive stress acting in a cross-section of porous material consists of two
contributions: psji = pfδij + σji/φs. The so-called intergranular stress σij is related to
the change in porosity: φf = φf(σij). The density of the solid material is considered
constant. For the fluid we may write pfji = pfδij . The interaction term fmi is specified
in its linear form:

ffi = −fsi = pf
∂

∂xi
(φf) + b0wi + φfρf(α∞ − 1)

∂wi

∂t
, (2.3)

where we have introduced the velocity difference vector w = vs− vf . The second term
on the right-hand side of (2.3) represents the steady-state friction. The friction factor
b0 is related to the steady-state permeability k0 by b0 = ηφ2

f/k0, with η the viscosity.
The last term on the right-hand side of (2.3) represents the added mass effect, with
α∞ the added mass parameter or tortuosity (Biot 1956a).

The continuity relations (2.1) may be linearized and combined. For our experiments
it is reasonable to assume that the solid grains are incompressible (dρs = 0). We then
find

∂φf

∂t
= (1− φf)∇ · vs, (2.4)

− φf

ρf

∂ρf

∂t
= φs∇ · vs + φf∇ · vf. (2.5)
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3. Plane wave propagation
We will now consider the propagation of plane compressional waves within a

system of Cartesian coordinates. Velocities in the (X,Y )-plane are neglected and the
field variables depend on z and t only. The linearized momentum equations for the
solid and for the fluid can be derived from (2.2) and (2.3) and were given by Biot
(1956a):

φsρs
∂vs

∂t
= −∂σzz

∂z
− φs

∂pf

∂z
− b0w − φfρf(α∞ − 1)

∂

∂t
(vs − vf), (3.1)

φfρf
∂vf

∂t
= −φf

∂pf

∂z
+ b0w + φfρf(α∞ − 1)

∂

∂t
(vs − vf), (3.2)

where vs and vf the velocity components in the z-direction. Using the time derivative
of Hooke’s law, the intergranular stress can be related to the solid velocity:

− ∂σzz

∂t
= Kp

∂vs

∂z
, (3.3)

where Kp is the constrained modulus of the matrix, related to the matrix bulk and
shear moduli Kb and G by Kp = Kb + 4

3
G. In (3.3), it is assumed that the grains are

incompressible (Verruijt 1982). The fluid density and the fluid pressure are related via
the bulk modulus of the fluid Kf = ρf(∂ρf/∂pf)

−1. Introduction of Kf in (2.5) yields
the so-called storage equation, which forms a basic relation in consolidation problems
(Verruijt 1982):

− φf

Kf

∂pf

∂t
= φs

∂vs

∂z
+ φf

∂vf

∂z
. (3.4)

We proceed with the substitution of (3.3) and (3.4) into the momentum equations (3.1)
and (3.2). Assuming a harmonic variation for all field variables, i.e. vm = v̂m(r) exp(iωt),
etc., we find

− φsρsω2v̂s = PD̂s + QD̂f − (v̂s − v̂f)[iωb− (α∞ − 1)φfρfω
2], (3.5)

− φfρfω2v̂f = QD̂s + RD̂f + (v̂s − v̂f)[iωb− (α∞ − 1)φfρfω
2], (3.6)

where we introduced the Biot constants P = Kp + Kfφ
2
s /φf , Q = φsKf and R =

φfKf . Obviously, it is not a priori necessary to assume that the solid grains are
incompressible, as we did in (2.4), (2.5), (3.3), and (3.4). Detailed expressions for the
Biot constants that allow for compressible grains were discussed by Geertsma & Smit
(1961), Stoll (1974) and Allard (1993).

Furthermore, we have defined a spatial derivative operator:

D̂m =
∂2

∂z2
v̂m, (3.7)

where the subscript m is either s or f. Note that the previously used steady-state
parameter b0 has been replaced by b(ω), describing the more realistic frequency-
dependent Darcy interaction force between the fluid and the solid. At low frequencies,
b(ω) will show a Stokes-flow behaviour, whereas at higher frequencies, when the
viscous skin depth δ = (2η/ωρf)

1/2 decreases, inertial effects will become dominant.
This behaviour can also be described by a frequency-dependent tortuosity α(ω)
(Johnson & Plona 1982). It was shown that α(ω) = α∞ − [ib(ω)/ωφρf]. A thorough
theoretical and experimental description of these phenomena was given by Lévy
(1979), Auriault (1980), Auriault, Borne & Chambon (1985), Johnson, Koplik &
Dashen (1987), Smeulders, Eggels & van Dongen (1992b) and Smeulders et al.
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(1994). The solution of (3.5) and (3.6) is given by v̂m = Am exp(−ikz), where k is the
wavenumber and Am is an arbitrary constant. Following van der Grinten, van Dongen
& van der Kogel (1985, 1987), two equations for As and Af are obtained from which
the dispersion relation is found:

d2ζ
2 + d1ζ + d0 = 0, (3.8)

where ζ = k2/ω2 and

d2 = PR − Q2,

d1 = −(Pρ22 + Rρ11 − 2Qρ12) + ib/ω(P + R + 2Q),

d0 = ρ11ρ22 − ρ2
12 − ibρ/ω.

 (3.9)

The density terms are defined in agreement with Biot (1956a):

ρ12 = −(α∞ − 1)φfρf, ρ11 = φsρs − ρ12, ρ22 = φfρf − ρ12, ρ = ρ11 + ρ22 + 2ρ12.

The dispersion relation (3.8) has two complex roots ζ1 and ζ2 and there are therefore
two damped compression waves, also called P-waves (Biot 1956a). For the velocities
of the solid and the fluid, we may now write

v̂s = As1e
−ik1z + As2e

−ik2z, (3.10)

v̂f = β1As1e
−ik1z + β2As2e

−ik2z, (3.11)

where for both wave modes j = 1, 2 the fluid–solid amplitude ratios βj = Afj/Asj
follow from either (3.5) or (3.6). The wavenumbers kj are fully determined by (3.8) as
a function of the properties of the porous material and its saturating fluid.

If the saturating fluid consists of a liquid–gas mixture, the contributions of the
liquid and the gas are taken into account in the fluid bulk modulus (Wood 1955,
p. 361):

1

Kf

=
s

Kl

+
1− s
Kg

, (3.12)

where we have denoted the liquid fraction in the pores by s (saturation) and the gas
fraction in the pores by 1− s. Kl is the bulk modulus of the pure liquid and Kg is an
effective bulk modulus of the gas phase, which relates the averaged gas volume Vg to a
change in liquid pressure pf∞ far away from the gas volume: Kg = −Vg(∂Vg/∂pf∞)−1.
This approach is similar to the treatment of wave propagation in bubbly liquids by,
among others, van Wijngaarden (1970, 1972). If the behaviour of the gas volume
is considered isothermal and quasi-stationary, Kg = pg , where pg is the pressure
within the gas volume. In the next sections, the damped oscillations of an isolated gas
bubble within the saturating liquid in the pores are studied, and a relation between the
liquid pressure far away from the bubble and the gas bubble volume is derived. This
relation is written as a complex-valued frequency-dependent effective bulk modulus
of the gas bubble. Next, following van Wijngaarden (1972), we will assume that the
same effective bulk modulus is valid for a homogeneous distribution of gas bubbles
within a very narrow range of bubble sizes.

4. Biot damping
The purpose of §§ 4 to 6 is to determine the damping mechanisms of oscillating

bubbles in a porous system. Obviously, this problem is closely related to the study of
small-amplitude acoustic wave propagation in bubbly liquids. Foldy (1945) showed
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that for small gas fractions the velocity and the damping of the waves can be deter-
mined to the order (1 − s) by describing the interaction of a single bubble with the
wave. Sangani (1991) determined the higher-order corrections to Foldy’s equations
by considering the bubble oscillations not in the pure liquid but in a medium that
has a much higher compressibility due to the presence of the other surrounding
bubbles. Therefore, the main difference between the Foldy and the Sangani models is
in the estimate of the acoustic radiation damping, as was also discussed in a paper
by Sangani & Sureshkumar (1993). The Sangani theory significantly improved the
agreement between experimental data and model computations for bubble frequen-
cies lower than and close to the bubble resonant frequency. In a porous medium
however, a complicating aspect is that the bubble is not surrounded by just one single
compressible medium, but by both the compressible pore fluid and the compressible
matrix. This means that the corresponding damping is described by the bubble emit-
ting two spherical Biot waves. The energy distribution over both waves is determined
by the boundary conditions at the bubble interface. Therefore, in a porous system the
radiation damping is replaced by a so-called Biot damping, which consists of fluid and
matrix compressibility effects (true radiation damping), and Darcy interaction effects
between the pore fluid and the solid matrix. In the previous Section, we showed that
this Darcy interaction can effectively be described by the parameter b(ω). As a matter
of fact, it turns out that for frequencies lower than or close to the bubble resonant
frequency, the Darcy part of the Biot damping strongly dominates the true radiation
damping. Following Foldy, we will therefore not apply higher-order corrections to the
compressibility of the pore fluid.

It is clear that the oscillations of gas fractions in a porous medium depend on
the shape and structure of those gas fractions. From visualization experiments in an
optically transparant porous material, we have learned that the gas fractions that
occur commonly occupy several pores and have a ramified shape, e.g. like alveoli in
the human lungs. Yet, the general character of the gas fractions is still spherical, with
part of the internal gas volume being occupied by skeletal material. Therefore, in the
forthcoming sections, the analysis is based upon this assumption of sphericity. We
will consider an isolated gas bubble and let the origin of coordinates be at the bubble
centre, which is at rest. The radius of the bubble at any time t is a(t) and r is the
radius to any point in the solid or in the liquid. The gas volume Vg = 4

3
φfa

3. Within
a system of spherical coordinates (r, φ, θ), the field variables describing wave motions
with polar symmetry depend on r and t only. The single velocity components vs and
vf are in the radial direction. From (2.2) and (2.3), the linearized radial momentum
equations for the solid and the fluid become (see also Achenbach 1973, p. 128)

iωφsρsv̂s = −∂σ̂rr
∂r
− 2(σ̂rr − σ̂φφ)

r
− φs

∂p̂f

∂r
− bŵ − iωφfρf(α∞ − 1)ŵ, (4.1)

iωφfρfv̂f = −φf
∂p̂f

∂r
+ bŵ + iωφfρf(α∞ − 1)ŵ, (4.2)

where σφφ = σθθ is the normal stress in any direction perpendicular to r. Hooke’s law
for both stress components may be written (Achenbach 1973, p. 77)

− iωσ̂rr = (Kb − 2
3
G)∇ · v̂s + 2G

∂v̂s

∂r
, (4.3)

− iωσ̂φφ = (Kb − 2
3
G)∇ · v̂s + 2G

v̂s

r
, (4.4)

where Kb is the bulk modulus and G the shear modulus of the matrix structure.
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Repeating the same procedures as in the case of one-dimensional wave propagation,
we end up with relations corresponding to (3.5) and (3.6). In this case, however, the
spatial derivative operator D̂m takes a different form. We find that it is convenient to
express the radial velocities in terms of potential functions v̂m = ∂Φ̂m/∂r, which yields

D̂m =
∂2v̂m

∂r2
+

2

r

∂v̂m

∂r
− 2v̂m

r2
=

∂

∂r

[
1

r

∂2

∂r2
(rΦ̂m)

]
. (4.5)

The solution of (3.5) and (3.6) is now given by

rΦ̂s = As1e
−ik1r + As2e

−ik2r, (4.6)

rΦ̂f = β1As1e
−ik1r + β2As2e

−ik2r, (4.7)

where k1 and k2 are the wavenumbers of both modes and β1 and β2 are the fluid–solid
amplitude ratios defined in the previous Section. In order to obtain the equation of
motion for the bubble, (4.2) is integrated over the fluid from r = a to infinity:

φfρfω
2Φ̂fa = −iωφf(p̂f∞ − p̂fa) + ω2ρ′12(Φ̂fa − Φ̂sa), (4.8)

where ρ′12 = ρ12 + ib/ω. Substitution of (4.6) and (4.7) into (4.8) yields

ρfω
2
[
b1A

′
1 + b2A

′
2

]
= −iωφf(p̂f∞ − p̂fa), (4.9)

where for both wave modes j = 1, 2 we have introduced

bj = φfβj − (βj − 1)
ρ′12

ρf
, A′j =

Afj

a
e−ikja.

For the matrix structure within the gas bubble surface (r < a), we may neglect the
interaction effects between the matrix and the gas. The gas bulk modulus is negligible
compared with the bulk modulus of the matrix. In this case, (3.5) becomes

− φsρsω2v̂s = KpD̂s . (4.10)

Assuming that the Helmholtz number ka � 1, where k2 = ω2φsρs/Kp, it follows
that the matrix within the bubble surface may be regarded as acoustically compact:
D̂s = 0. Using (4.5) yields that the solid velocities within the bubble surface are
directly proportional to r. This means that[

∂v̂s

∂r

]
a

=

[
v̂s

r

]
a

. (4.11)

From (2.4), it can also be found that the porosity within the bubble surface must be
uniform, i.e. not a function of r. This implies that the mass conservation law (2.5) may
be integrated over the volume Vg/φf within the bubble surface to find an equation
which directly relates a change in gas bubble volume to the fluid and matrix velocities
at the bubble surface (r = a):

iωV̂ g = 4πa2
(
φsv̂sa + φfv̂fa

)
. (4.12)

Substitution of (4.6) and (4.7) into (4.11) and (4.12) yields another two equations for
the previously defined parameters A′j:

a1A
′
1 + a2A

′
2 = 0, (4.13)

c1A
′
1 + c2A

′
2 = −iω

V̂ g

4πa
, (4.14)
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Figure 1. Damping coefficients of freely oscillating gas bubbles in a saturated porous medium as a
function of the reduced frequency. Bubble radius: 1 mm. Dashed lines refer to an incompressible
pore fluid and an incompressible porous matrix. ωc is defined in (4.16).

where

aj = k2
j

(
1− 3

1 + ikja

k2
j a

2

)
,

cj = (1 + ikja)
(
1− φf + φfβj

)
.

From (4.9), (4.13) and (4.14), a relation between the driving pressure p̂f∞ and the
change in the gas bubble volume may be found by eliminating the coefficients A′j:

ω2ρf

(
a1b2 − a2b1

a1c2 − a2c1

)
V̂ g

4πφfa
= p̂f∞ − p̂fa. (4.15)

This is a modified version of the well-known Rayleigh–Plesset equation, which was
originally derived to describe the oscillating behaviour of gas bubbles in a surrounding
fluid (Plesset 1949; van Wijngaarden 1970). Note that the term V̂ g/(4πφfa) equals
aâ. The imaginary part of the term between brackets in (4.15) accounts for the
Biot damping consisting of Darcy damping and compressibility effects. The fluid
surrounding the bubble provides the inertia for this system, as can be seen on the
left-hand side of (4.15). As discussed previously, the Darcy friction originates from
the relative velocity of the fluid with respect to the solid matrix as a result of the gas
bubble oscillations. Obviously this term is not present in the original Rayleigh–Plesset
equation. A plot of the newly introduced Biot damping as a function of the reduced
frequency is given in figure 1 for a bubble radius a = 1 mm. The other parameter
values are given in table 1. The characteristic frequency is defined in agreement with
our earlier work (Smeulders et al. 1992b):

ωc = ηφf/k0α∞ρf. (4.16)

For a gas bubble surrounded by an incompressible fluid and an incompressible solid
matrix, only the pure Darcy damping is left. In this case (4.15) becomes

ω2ρf

(
1− ρ′12

φfρf

)
V̂ g

4πφfa
= p̂f∞ − p̂fa. (4.17)
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Porosity φf 0.29
Viscosity η (Pa s−1) 0.001
Matrix bulk modulus Kp (109 Pa) 10.2
Fluid bulk modulus Kf (109 Pa) 2.2
Tortuosity α∞ 2.7
Grain density ρs (kg m−3) 2650.0
Fluid density ρf (kg m−3) 1000.0
Permeability k0 (10−12 m2) 90.91

Table 1. Parameter values

The imaginary part of the term between brackets now represents the pure Darcy
damping coefficient which is also drawn in figure 1. It becomes clear that the true
radiation damping, represented by the difference between the Biot and the Darcy
damping, is negligible for low frequencies, and only becomes important for higher
frequencies. In figure 1, the viscous damping and the thermal damping are also drawn.
These mechanisms will be discussed in the next sections.

5. Viscous damping at the bubble surface
In order to eliminate the liquid pressure pfa in (4.15) and (4.17), we will now consider

the pressure difference over the bubble surface and assume that it is balanced by the
radial viscous stress in the fluid at the bubble surface (Bird, Stewart & Lightfoot
1960, p. 90):

pfa − pg = η

(
2
∂vf

∂r
− 2

3
∇ · vf

)
a

(5.1)

where pg is the gas bubble pressure. For our experimental conditions the effects of
surface tension can be neglected. Furthermore, the gas bubble pressure is assumed to
be uniform throughout the bubble, which implies that the inertia and the viscosity
of the gas are negligible. The same approach was used by Dontsov et al. (1987),
who also ignored surface tension effects. Assuming a harmonic dependence for the
relevant parameters, using (4.6) and (4.7) for the velocities, and eliminating A′1 and
A′2 from (4.13) and (4.14), we find from (5.1):

p̂fa − p̂g = 4
3
iωη

a1a2(β2 − β1)

a1c2 − a2c1

V̂ g

4πa
. (5.2)

Substitution of (5.2) into the Rayleigh–Plesset equation (4.15) yields

ω2ρf

[
a1b2 − a2b1

a1c2 − a2c1

+
4

3

iηφf
ωρf

a1a2(β2 − β1)

a1c2 − a2c1

]
V̂ g

4πφfa
= p̂f∞ − p̂g. (5.3)

The imaginary part of the second term between the brackets in (5.3) is the dimen-
sionless viscous damping coefficient. For a bubble radius a = 1 mm, the viscous
term is plotted in figure 1. The other parameters are given in table 1. Over the entire
frequency range the viscous damping appears to be much less important than the Biot
damping. In the case of an incompressible fluid–solid system, the above procedures
can be repeated, and (5.3) transforms into

ω2ρf

(
1− ρ′12

φfρf
− 4iη

a2ωρf

)
V̂ g

4πφfa
= p̂f∞ − p̂g. (5.4)
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The viscous damping term in this relation is exactly as defined by van Wijngaarden
(1972), and is also plotted in figure 1. It is interesting to notice that over the entire
frequency range the viscous damping is virtually unaffected by the compressibility
of the fluid–solid system. A comparison between the viscous and Biot damping is
determined by the ratio 4k0/a

2φ, which is of the order 10−3 for our experiments.

6. Thermal damping
The thermal damping of an oscillating gas bubble submerged in an infinitely

extended fluid has been investigated by, amoung others, Pfriem (1940), Spitzer (1943),
Devin (1959), and Prosperetti (1984, 1991). These theories will now be modified and
applied to the case of an oscillating gas bubble in a fluid-saturated porous medium.
As we stated previously, a gas bubble with radius a in a fluid-saturated porous
medium will commonly occupy several pores: a > R, where R is a characteristic pore
radius. As before we define a spherical coordinate system originating at the centre of
the bubble. The bubble, which is in an alternating pressure field pf∞, can only be in
equilibrium with this oscillating pressure by pulsating itself. We will now consider a
cycle of vibration of the bubble. As the bubble is compressed its temperature T rises;
when the rise of the temperature is appreciable, heat conduction becomes important
and the bubble tends to cool off even before the expansion has started. We assume
that the heat conduction will take place from the gas phase to the porous matrix
and we will neglect any heat flow from the bubble to the surrounding pore fluid.
When maximum compression is reached the temperature will already be decreasing
as heat flows from the bubble into the surrounding grains. It is obvious that in this
case maximum temperature will be reached somewhat before maximum compression
is established. Therefore the temperature of the bubble at a given volume will be
somewhat greater during the compression part of a cycle than during the expansion
part. Since there is a direct relation between volume and pressure of the gas bubble,
at a given volume the pressure exerted on the bubble during the compression will be
greater than the corresponding pressure during the expansion. Hence more energy is
required to compress the bubble than is regained in the subsequent expansion. The
work done by the bubble during one cycle of its vibration is negative and represents
a net flow of heat into the surrounding grains. For a compressible perfect gas, the
linearized energy equation becomes (Devin 1959)

∂(rT )

∂t
= ag

∂2(rT )

∂r2
+

r

ρgcp

∂pg

∂t
, (6.1)

where ag is the thermal diffusivity of the gas phase and cp the specific heat at constant
pressure. We have neglected the viscous dissipation within the bubble and we have
considered the heat flow as a result of conduction alone. This is because convection is
unimportant, as the time factor for establishment of this process is considerably larger
than the time taken for a half-cycle vibration of the bubble. Assuming an exp(iωt)
dependence for all relevant quantities and satisfying the boundary conditions that the
linearized temperature variation T̂ must be finite at the centre of the bubble and zero
at the gas–grain interface, (6.1) may be solved:

rT̂ =
Rp̂g

cpρg

[
r

R
− sinh(ψr)

sinh(ψR)

]
, (6.2)

where ψ = (1 + i)(ω/2ag)
1/2. This relation is basically the same as the one found by

Devin (1959), who necessarily introduced a instead of R as the relevant length scale.
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The heat flow rate Q̂R (i.e. unit energy per unit time) from the part of the
bubble volume occupying one single pore to the surrounding grains may now be
calculated. It is proportional to the temperature gradient at the gas–grain interface:
Q̂R = 4πR2λg[∂T̂/∂r]R , where λg is the thermal conductivity of the gas phase. The

total heat flow rate Q̂ away from the bubble may subsequently be obtained by taking
into account the total gas bubble volume: Q̂ = φf(a/R)3Q̂R . From (6.2), we may then
write

Q̂ = 3Vgagp̂gψ
2

[
coth(ψR)

(ψR)
− 1

(ψR)2

]
, (6.3)

where we have written Vg = 4
3
πφfa

3. We find that the heat conduction process is

governed by the parameter (ψR) and thus by the ratio R/δT , where δT = (2ag/ω)1/2

is the thermal depth of penetration.
It is also possible to calculate the internal energy ÊR of the part of the bubble

volume occupying one single pore. We will consider this volume as the sum of all
concentric shells with radius r and thickness dr. For each shell the temperature is
known according to relation (6.2) and consequently also the internal energy dÊR =
ρg cvT̂4πr2dr, where cv is the specific heat at constant volume. Subsequent substitution

of (6.2) and integration from zero to R yields ÊR . For the total internal energy Ê of
the gas bubble we may consequently write

Ê = φf

( a
R

)3

ÊR = Vg
p̂g

γ

[
1 +

3

(ψR)2
− 3

(ψR)
coth(ψR)

]
, (6.4)

where γ = cp/cv . Apparently, the internal energy is also determined by the ratio R/δT .
The time derivative of the internal energy must obey the first law of thermodynamics,
which is written in the form

iωÊ = −Q̂− iωpgV̂ g, (6.5)

where a harmonic variation has been substituted for all relevant quantities. Please
note that the minus-sign in front of Q̂ is a consequence of our definition of the
direction of the heat flow, which has been chosen positive when flowing from the gas
bubble towards the surrounding grains. From (6.5) it becomes obvious that a relation
between the change in volume and the change in pressure of the gas bubble may be
found after substitution of (6.3) and (6.4):

p̂g

pg
= −nV̂ g

Vg
, (6.6)

where we have introduced a complex-valued polytropic exponent n:

n = γ

{
1 + 3(γ − 1)

[
coth(ψR)

(ψR)
− 1

(2ψR)2

]}−1

. (6.7)

This relation may be compared with the ones proposed by Devin (1959) and Pros-
peretti (1984, 1991) for oscillating bubbles in a liquid. It is found that for porous
media the pore radius R is used instead of the bubble radius a. We assume that R is to
a good approximation equal to the viscous length scale Λ = (8α∞k0/φf)

1/2, introduced
by Johnson et al. (1987). A plot of the real and imaginary parts of n is presented in
figure 2. For small values of R/δT an isothermal behaviour is observed: n → 1.0. In
the limit of high R/δT values the process will behave isentropically: n→ γ = 1.4. In
between there is a transition zone with a non-zero imaginary part of n, which causes
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Figure 2. Real and imaginary parts of the polytropic exponent n as a function of the pore radius
over the thermal penetration depth.

a phase difference between the pressure and the volume variations of the gas bubble.
This imaginary part of n is therefore responsible for the thermal damping. This can
be seen by substituting p̂g from (6.6) into (5.3). The dimensionless thermal damping
coefficient may then be written

δth =
3pg Im(n)

ρfω2a2
. (6.8)

For a gas pressure pg = 105 Pa and a bubble radius a = 1 mm, the thermal damping
is plotted in figure 1. In the lower frequency range, the thermal damping is of the
same order of magnitude as the Biot damping, but for higher frequencies it becomes
relatively less important. Champoux & Allard (1991) and Henry et al. (1995) argue
that a more general expression for the polytropic exponent can be given:

n = γ

{
γ − (γ − 1)

[
1− 4i

(Λ′/δT )2

(
1 + 1

8
i(Λ′/δT )2

)1/2
]−1
}−1

, (6.9)

where Λ′ is a thermal length scale, defined as a pore volume-to-surface ratio:

2/Λ′ =

∫
dS

/∫
dV . (6.10)

Both expressions for the polytropic exponent (6.7) and (6.9) are characterized by a
low-frequency limit and by an asymptotic behaviour for high frequencies. It can be
shown that these characteristics are identical in both expressions, if a thermal length
scale Λ′ = 2R/3 is introduced in (6.7), which is in agreement with the definition of Λ′

in (6.10).

7. Dynamic compressibility
Taking into account all the damping mechanisms that we considered in the previous

sections, it is now possible to calculate the effective bulk modulus of the isolated gas
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bubble Kg = −Vg(∂Vg/∂pf∞)−1. Combination of (5.3) and (6.6) yields

Kg = 1
3
a2ω2ρf

[
3npg
a2ω2ρf

− a1b2 − a2b1

a1c2 − a2c1

− 4

3

iηφf
ωρf

a1a2(β2 − β1)

a1c2 − a2c1

]
. (7.1)

In the case of an incompressible fluid–solid system, we find that

Kg = 1
3
a2ω2ρf

(
3npg
a2ω2ρf

− 1 +
ρ′12

φfρf
+

4iη

a2ωρf

)
. (7.2)

This last relation for Kg was reported previously by Smeulders et al. (1992a) for
isothermal behaviour of the gas bubbles, i.e. n = 1. If the viscous damping term is
also ignored, we find an expression for the effective bulk modulus which was reported
by Sniekers et al. (1989). Following van Wijngaarden (1972), we will now assume that
(7.1) also holds for a saturating fluid containing a large number of homogeneously
distributed bubbles within a very narrow range of bubble sizes. Combination of (3.12)
and (7.1) then determines the bulk modulus of the fluid as a whole. Results are given
in figures 3(a) and 3(b) for gas fractions of 0.1% and 0.5% and gas bubble radii of
1 and 5 mm. The bulk modulus of the liquid Kl = 2.2 GPa. For low frequencies,
the gas bubbles vibrate isothermally and Kg = pg = 105 Pa. As Kg � Kl , even small
gas fractions substantially decrease the low-frequency bulk modulus of the fluid.
For (1 − s) = 0.1%, we may compute the low-frequency ratio of the bulk moduli:
|Kf |/Kl = 4.35 × 10−2 (see curves 1 and 2 in figure 3a), and for (1 − s) = 0.5%, we
find that this ratio is 9.01×10−3 (curve 3). In the high-frequency limit, Kg → −∞ and
therefore Kf → Kl/s. This means that for small gas saturations the high-frequency
compressibility is hardly affected by the gas in the pores, as is clearly visible in figure
3(a). The minimum absolute values of the bulk moduli are determined by the resonant
frequency of the gas bubbles ωr = (pg/α∞ρfa

2)1/2. The gas bubbles are vibrating in
phase with the exerted fluid pressure which results in a highly compressible fluid.
The minima are not determined by the gas saturation as can be seen from curves 2
and 3 in figure 3(a). The maximum values of the bulk moduli occur at the so-called
anti-resonant frequencies of the gas bubbles. This means that an increase in fluid
pressure causes the gas bubbles to expand. They are vibrating out of phase, which
leads to a very incompressible pore fluid. This is neatly illustrated in the phase plot,
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medium with water and equally sized gas bubbles as a function of the reduced frequency. Gas
volume fraction: 0.1%. Gas bubble radius: 1 mm. The dashed lines refer to the quasi-stationary
model. ωc is defined in (4.16).

where values of over 150◦ are reached in the transition from in-phase to out-of-phase
behaviour. From figure 3(a), it also becomes clear that the maxima are determined
both by the gas bubble size and by the gas saturation.

Having determined Kf(ω) in this way, the dispersion relation (3.8) can now be
solved. A comparison is made with a quasi-stationary model, in which the gas bubble
oscillations are not taken into account: Kf(ω) = Kf(0). The results are shown in
figures 4(a) and (b), where the phase velocities ω/Re(kj) and the damping coefficients
Im(kj) are plotted as a function of the reduced frequency. For the quasi-stationary
model (dashed lines), our results are similar to the ones presented by Biot (1956a, b).
Two wave modes are found, and mode 1 is faster and less damped for all frequencies.
For the partially saturated case, dispersion calculations were previously presented
by Smeulders et al. (1992a), but only Darcy and viscous damping were taken into
account. Similar computations were also carried out by Bedford & Stern (1983),
but they considered the thermal damping as the prevailing mechanism. We notice
that a small amount of gas substantially influences phase velocities and damping
coefficients. The velocity of the second wave mode reaches its maximum when the
gas bubbles are vibrating out of phase, which results in a very incompressible fluid.
The damping of the second wave reaches its maximum at the gas bubble resonant
frequency, where the fluid is very compressible and the velocity of the second wave
has a local minimum. The transition from in-phase to out-of-phase behaviour of the
gas bubbles could be interpreted as a mode switch: the velocity of mode 1 becomes
greater than of mode 2 and the damping of mode 1 becomes greater than of mode
2. But in fact this interchange of roles is a matter of academic interest only, because
all resulting pressure computations are determined by a summation of both wave
modes. Finally, in the high-frequency limit, the effects of the gas in the pores can
be completely neglected, and the resulting velocities and damping coefficients are the
same as in the fully saturated case.

8. Experimental set-up
The experimental set-up consists of a vertical shock tube with a length of about

8 m and an internal diameter of 77 mm. This set-up has been described by different
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Figure 5. Experimental set-up for wave experiments in a porous medium. The test sample is
placed in the test section of the shock tube.

authors like van der Grinten et al. (1985, 1987), Sniekers et al. (1989) and Smeulders
et al. (1992a). A similar shock tube technique for the experimental investigation of
wave propagation in porous media was also used by Dontsov et al. (1987). The set-up
is drawn in figure 5. The shock tube sections are made out of steel and have a wall
thickness of 24 mm. Below, in the test section, we have placed a cylindrical test sample
with a length Lc of 1.41 m and a diameter dc of 74 mm. For our experiments Lc > λ/4,
where λ is a typical acoustic wavelength. The sample is a porous matrix, consisting
of sand grains glued to each other by means of an epoxy resin. The diameter of an
individual sand grain is approximately 0.5 mm. The properties of the test column are
listed in tabel 1. Please note that these properties were all determined independently.
The gap of 1.5 mm between the walls of the shock tube and the porous column is in
order to prevent any shear interaction between the walls of the shock tube and the
porous sample. The sidewall of the sample is covered with an epoxy coating (Sigma,
Colturiet TCN), in order to prevent any lateral fluid flow through the sample wall.
The sample is equipped with two miniature pore pressure transducers (Druck PDCR
81, without ceramic filters), located at 2 and 12 cm from the top of the sample.
Finally, we have mounted a piezoelectric pressure gauge (Kistler 603B) in the shock
tube wall 46 cm above the top of the porous column (see figure 5) to record the
incident and reflected waves and to trigger the data recording system.

The preparation of the pore fluid, consisting of a water–air mixture, proceeds as
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follows. First, the porous sample is fully water saturated. This is done by carefully
evacuating the sample and filling the pores with carbon dioxide. Subsequently, the
sample is filled with de-gassed water. The water level in the shock tube is indicated
in figure 5. Carbon dioxide is far more soluble in water than air, thus causing a
complete dissolution of any gas remnants. Next, in a separate vessel, an amount
of water is saturated with air, at a constant pressure level, by blowing air bubbles
into the vessel. The amount of air dissolving in the water is controlled by the vessel
pressure, which is higher than the atmospheric pressure. By means of a rotary pump,
this air-saturated water is flushed through the porous column until its entire pore
volume has been refreshed about 50 times. Meanwhile, the porous column is held
at the same pressure as within the vessel, and the blowing of air bubbles continues.
Finally, the circulation is stopped, and the pressure is released. The pore fluid is now
a super-saturated (200–300%) air solution. Gas molecules start to form gas bubble
nuclei, which may take place at any microscopic roughness in the pore surface.
This process is called heterogeneous nucleation. A description of this process and
of the subsequent conditions for bubble growth is given by Ward et al. (1983). The
spontaneous (homogeneous) formation of air bubbles does not occur. For this process
a super-saturated air solution of 2000% is needed (van Stralen & Cole 1979).

The growth of the nuclei into fully fledged bubbles is a diffusion-dominated process,
with gas bubble size and distribution as important parameters. These parameters are
determined from a series of pore fluid compressibility measurements during the
process of bubble growth. This measurement proceeds as follows. The pore fluid is
subjected to a small pressure increase ∆p during a time interval τ (typically of the
order of several minutes), which is short enough to ensure that almost no gas from
the bubble is dissolved in the surrounding liquid. From the corresponding change in
liquid volume, the ‘frozen’ compressibility of the pore fluid is found, which is a direct
measure for the gas fraction. The change in liquid volume is registered using a laser
beam reflection from the water surface in the shock tube (van der Grinten et al. 1988).
By repeating the ‘frozen’ compressibility measurements, the gradual change of the gas
fraction (1− s) towards a new equilibrium state can be measured and compared with
diffusion theory (see the Appendix). Using a least-squares method, the best match
for air bubble size and concentration to diffusion theory is obtained. In figure 6,
an air bubble growth curve is plotted as a function of reduced time tDe/a

2
e , where

De is the effective diffusion constant of the liquid, and 2ae is the average distance
between gas bubbles. Each circle in the figure represents a ‘frozen’ compressibility
experiment. When the gas bubbles have reached equilibrium, wave experiments are
carried out. The time to reach equilibrium is typically in the order of 3–4 weeks. A
typical equilibrium bubble radius a is of the order 10−2 m.

9. Reflection
A wave experiment proceeds as follows. A pressure difference is created over the

membrane which separates the test section from the upper section (see figure 5). By
means of an electric current, the membrane is ruptured, and a shock wave in air is
generated, which is transmitted into the water layer on top of the porous test column.
This wave then partially reflects and partially transmits into the test column. For a
typical wave velocity in the porous test column of the order 103 m s−1, the acoustic
wavelength λ for a frequency of the order 104 Hz is of the order 10−1 m, which is an
order of magnitude larger than the bubble radius. Hence direct acoustical variations
of pressure and temperature within a bubble may be neglected. As λ� a > Λ, where
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Figure 7. Experimental (a) and theoretical (b) reflection signals at z = −46 cm. Incident step-wise
pressure wave: 1.48 bar. Gas volume fraction: 0.66%. Bubble radius: 2.9 mm. The dashed line refers
to the quasi-stationary model. pg is the atmospheric pressure.

Λ is the viscous length scale of the pores, a continuum approach may be used, and
the Biot theory is fully applicable.

The recorded pressure at 46 cm above the column is shown in figure 7(a). The gas
fraction in the column is 0.66±0.01 % with a mean gas bubble radius of 2.9±0.2 mm.
We have reported reflection experiments previously, but so far only quasi-stationary
models (van der Grinten et al. 1988) or approximate dynamic models (Sniekers et al.
1989) have been used. At t = −0.31 ms, the arrival of the incident wave is recorded.
The initial negative pressure peak at that time is caused by the compliance of the
shock tube. Because t = 0 is defined by the arrival of the incident wave at the top
of the test column, the wave reflected from the column is recorded at t = 0.31 ms.
The negative pressure peak is visible again, followed by a pressure overshoot and a
subsequent gradual pressure decrease (see figure 7a). Our available measuring time is
limited to approximately 0.7 ms, because the upgoing reflected wave will be reflected
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from the free water surface, will propagate downward again and in this way act as a
second incident wave.

In figure 7(b), theoretical pressure curves are presented for both the dynamic and
quasi-stationary models. These theoretical curves are computed from the plane wave
solutions (3.10) and (3.11). From the continuity of pressure and volume flux at the
interface between the water layer and the porous test sample at z = 0, and using the
condition that at the free surface of the test column the compressive stress vanishes,
the amplitudes As1 and As2 in (3.10) and (3.11) can be calculated. Next, straightforward
Fourier decomposition is used to compute the pressure–time plots in figure 7(b) (van
der Grinten et al. 1985, 1987). It is obvious that the quasi-stationary model is unable
to give an accurate description of the measurement. Instead of a pressure overshoot at
t = 0.31 ms, a pressure decrease is predicted, followed by a gradual pressure increase.
This negative reflection coefficient is caused by the high compressibility of the fluid.

In the dynamic model, the high-frequency limit of the fluid bulk modulus Kf is
not affected by the gas bubbles (see figure 3). This results in a correct prediction of
the height of the pressure overshoot at t = 0.31 ms. Also, the subsequent pressure
decrease appears in our computations, but it is overestimated. This pressure decrease
is caused by the high compressibility of the fluid for frequency components close
to the gas bubble resonant frequency (see figure 3), resulting in negative reflection
coefficients for those frequency components.

10. Transmission
In the same experiment, the pore pressures at 2 and 12 cm from the top of the

column were also measured. Results are shown in figures 8(a) and 8(c), respectively.
At 2 cm, a similar pressure behaviour as in the reflected signal is visible. A pressure
overshoot is recorded, followed by a steep descent and a subsequent gradual pressure
rise. Small oscillations are visible on the ascending slope of the pressure overshoot.
In figure 8(b), the computed pressure signals are plotted for the dynamic model (solid
line) and the quasi-stationary model (dashed line). Because of the high compressibility
of the pore fluid, the first Biot wave hardly appears in the quasi-stationary model.
This model only computes the second Biot wave, propagating at a speed of 74.5 m s−1,
and causing a diffusive pressure rise at t = 0.27 ms. Note that this velocity is lower
than the speed of sound in air, which is caused by the fact that the gas bubbles
substantially alter the compressibility of the pore fluid, but hardly influence its
density.

From figures 8(a) and 8(b), we find that there is a good agreement between the
measurements and the dynamic model. Because the pore fluid is relatively incompress-
ible for high frequencies, the first Biot wave appears correctly in our computations,
followed by the pressure decrease caused by the high compressibility of the pore fluid
for frequencies close to the gas bubble resonant frequency. At 12 cm, we find that the
first Biot wave has developed into an oscillatory pressure signal (see figure 8c). The
oscillations are followed by a slow pressure rise. From the recordings at 2 and 12 cm,
and from measurements involving the waves reflected from the bottom of the test
sample, a wave speed of 2550 ± 180 m s−1 was determined. In figure 8(d), we have
again plotted the computed dynamic and quasi-stationary pressures. Obviously, the
quasi-stationary model (dashed line) does not predict any non-zero pressure readings
until the arrival of the second Biot wave at t = 1.61 ms. It is therefore not visible on
the time scale of figure 8(d).

Also in this case, we find that there is a good agreement between the experiment and
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Figure 8. Experimental (a, c) and theoretical (b, d) pore pressure signals at z = 2 (a, b) and z = 12
(c, d) cm. Incident step-wise pressure wave: 1.48 bar. Gas volume fraction: 0.66 %. Bubble radius:
2.9 mm. The dashed lines refer to the quasi-stationary model. pg is the atmospheric pressure.

the dynamic model (see figures 8c and 8d). The oscillations are predicted correctly and
so is the subsequent slow pressure rise. The theoretical wave velocity is 2866 m s−1,
which is equal to the theoretical velocity of the fastest wave in the high-frequency
limit (see figure 4). This velocity is slightly higher than the measured wave velocity,
which may be caused by the fact that the experimental configuration cannot fully be
described by a one-dimensional model. Also, the stiffness of the matrix, determined
by the dry constrained modulus Kp, may have decreased upon contact with the water.
A further comparison between experiment and theory is made in figure 9, where the
frequency spectra of the oscillations are shown. It appears that there is a distinct
frequency maximum in the measurement at ω = (4.9± 0.2)× 104 s−1. The theoretical
frequency maximum is somewhat lower (3.2 × 104 s−1), but there is a good overall
agreement between experiment and theory. It is found that the frequency maximum
in the pressure signal corresponds to an anti-resonance type of bubble oscillation
as described in § 7. The frequency of this oscillation is significantly higher than the
resonant frequency of the gas bubbles (ωr = 2099 s−1).

At the same depth of 12 cm, the influence of a change in gas bubble size and
concentration is investigated. New measurements were performed for a smaller gas
bubble size and concentration: (1−s) = 0.12±0.01% and a = 0.6±0.2 mm. The result
is plotted in figure 10(a). Also in this case an oscillatory pore pressure behaviour is
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Figure 10. Experimental (a) and theoretical (b) pore pressure signals at z = 12 cm. Incident
step-wise pressure wave: 0.82 bar. Gas volume fraction: 0.12%. Bubble radius: 0.6 mm. The dashed
line refers to the quasi-stationary model. pg = 2 bar.

recorded. The subsequent pressure rise, however, is much stronger than in figure 8(c).
The oscillatory wave propagates with a velocity of 2560± 190 m s−1. This velocity is
the same as in the less saturated case, which means that this wave velocity is hardly
influenced by the size and concentration of the gas bubbles. Corresponding theoretical
curves for the dynamic and quasi-stationary model are given in figure 10(b). Contrary
to figure 8(d), the first Biot wave is visible in the quasi-stationary computation (dashed
line). It appears as a small step wave at t = 0.05 ms, propagating with a velocity of
2269 m s−1, which is lower than the measured velocity of the oscillating wave. The
second Biot wave, propagating with a velocity of 234.7 m s−1 is visible as a diffusive
pressure rise at t = 0.51 ms. No oscillations are computed.

From figures 10(a) and 10(b), we find that all essential aspects of the measurement
are predicted by the dynamic model. An oscillating wave is computed, propagating
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with a velocity of 2863 m s−1. As before, the measured velocity is slightly lower
than this computed value. Also, the strong pressure rise is visible in our dynamic
computations, but it appears overestimated. From figures 10(a) and 10(b), it is clear
that the measured frequencies of the oscillations are lower than predicted. This is
probably caused by inhomogeneities in the gas bubble distribution.

11. Conclusions
We have developed a dynamic model for the compressibility of pore fluid contain-

ing small gas bubbles. In this model viscous and thermal damping of oscillating gas
bubbles are taken into account. A Biot damping mechanism is introduced, consist-
ing of Darcy and compressibility effects. It appears that the Darcy damping is the
dominant mechanism, but compressibility effects become equally important for high
frequencies. An interesting aspect of this model is that the high-frequency compress-
ibility of the pore fluid is virtually not affected by the presence of the gas bubbles
and is almost the same as in the fully saturated case. In this respect, the dynamic
model is different from the quasi-stationary model, in which the influence of a small
gas fraction in the pores on the fluid compressibility is predominant and identical
for all frequencies. This dynamic fluid model was incorporated in the Biot theory for
plane wave propagation in poro-elastic media. It was found that small gas saturations
have very important effects on wave velocities and damping coefficients. Strong pore
pressure oscillations were predicted, propagating in the porous medium with relatively
high velocities and low damping coefficients.

These effects were experimentally investigated in a shock tube. Using a super-
saturation technique, a homogeneous gas–liquid mixture in a porous test sample
was obtained. Gas bubble size and concentration were independently measured by
means of compressibility measurements. All relevant physical properties of the test
sample were also determined independently. For the pore pressures, an oscillating
wave mode was recorded indeed, whose velocity was not influenced by the size and
concentration of the gas bubbles, but mainly by the physical properties of the porous
structure. As predicted by our modified Biot model for plane wave propagation, the
frequencies of this wave mode were found to correspond to an anti-resonance type of
gas bubble oscillation, with frequencies higher than the bubble resonant frequency.
These frequencies are determined by the size and concentration of the gas bubbles in
the pores.

For the reflected waves, an initial pressure overshoot was recorded, followed by
a pressure decrease. This initial overshoot is caused by the low compressibility of
the pore fluid for high frequencies, whereas the pressure decrease is caused by the
high compressibility of the pore fluid for frequencies close to the gas bubble resonant
frequency.

We would like to thank A. A. M. Wasser for constructing the experimental set-
up and the anonymous referees for their suggestions. This work was supported by
Grant No. ETN 37.1274 of the Netherlands Foundation for Fundamental Research
on Matter.

Appendix. Gas bubble growth
Following Smeulders et al. (1992a), a quasi-steady description of the diffusion-

dominated bubble growth process is given. Considering a gas bubble of radius a(t),
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we define the origin of coordinates at the bubble centre, which is at rest. The position
of any point in the fluid is indicated by its distance r from the origin. A stepwise
ambient pressure decrease will cause the fluid to be super-saturated, and gas bubble
growth begins. A reduced dissolved gas density C at a fixed time t may be defined:

C =
ρd(r, t)− ρd∞(t)

ρda − ρd∞(t)
, (A 1)

where ρd is the dissolved gas density in the fluid, ρda is the dissolved gas density
at r = a, and ρd∞ is the dissolved gas density far away from the bubble. From the
quasi-steady diffusion equation ∇2C = 0, we find that C(t) = a(t)/r. The mass flux
from the fluid towards the gas bubble may now be calculated:

4
3
πρg

da3(t)

dt
= −4πa(t)De [ρda − ρd∞(t)] , (A 2)

where De is an effective diffusion constant. It is equal to the diffusion constant D in
water, modified by the tortuosity parameter α∞: De = D/α∞ (Smeulders et al. 1992a).
For a large number of bubbles with number density N m−3, we define the average
distance between bubbles 2ae as N−1/3. If this average distance far exceeds the bubble
radius, equation (A 2) still holds if we replace the factor ρd∞(t) by the dissolved gas
density ρde(t) at r = ae. For the mass conservation law we may write

4
3
πρga

3(t) +

∫ ae

a(t)

4πr2ρd(r, t)dr = 4
3
πρd0a

3
e , (A 3)

where ρg is the uniform gas density in the bubble, and ρd0 is the uniform dissolved
gas density at t = 0. To a good approximation, the integral in (A 3) is equal to
4
3
πρde(t)

[
a3
e − a3(t)

]
. Assuming a3(t)� a3

e , we find from equation (A 3)

ρde(t) = ρd0 − ρg
a3(t)

a3
e

. (A 4)

Substitution of this equation in (A 2) yields a differential equation for the reduced
bubble radius η(t) = a(t)/ae:

η
dη

dt′
= η3

∞ − η3, (A 5)

where η3
∞ = (ρd0 − ρda)/ρg . Furthermore, we have introduced the reduced time t′ =

Det/a
2
e . When the diffusion process is approaching its new equilibrium state for t′ → ∞,

obviously dη/dt′ will tend to zero and η → η∞. Solving the differential equation (A 5),
we find

t′ =
1

6η∞
ln
η2
∞ + η∞η + η2

(η∞ − η)2
+

1

η∞
√

3

[
π

6
− arctan

2η + η∞

η∞
√

3

]
. (A 6)

The relation between the bubble radius and the gas fraction is given by

a3(t)

a3
e

= η3(t) = 1− s(t). (A 7)
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